Israel Gelfand (1913-2009)
Mark Naimark (1909-1978)
Irvin Segal (1918-1998)
A particular case of the GNS construction
Unital $\phantom{A}^$$^$$\mathcal{M} \subseteq$ C$^*$-algebra $\mathcal{A}$ equipped with a state $\varphi$
Unital $^*$-algebra $\mathcal{M}$:
- Vector space with addition and scalar multiplication.
- $(xy)z=x(yz)$ (associative multiplication).
- $(\lambda x + y)z= \lambda xy + yz$ (distributivity).
- Involution: $(\alpha x+ \beta y)^= \overline{\alpha} x^ + \overline{\beta}y^$, $(xy)^=y^x^,$ $(x^)^=x$.
- multiplicative unit $1$.
$C^*$-algebra $\mathcal{A}$:
- $\| x^*x \|= \|x \|^2$.
- Complete as a normed space.
State $\varphi$ on $\mathcal{A}$:
- linear functional.
- positive: $\varphi (x^*x) \geq 0.$
- $\varphi (1)=1.$
- faithful on $\mathcal{M}$: $\varphi(x^*x)=0 \Rightarrow x=0$ for every $x \in \mathcal{M}$.
Define an Inner product on $\mathcal{M}$:
$$
\langle x| y \rangle_\varphi = \varphi(x^*y) \quad \text{for all }x,y \in \mathcal{M}.
$$
Complete $\mathcal{M}$ to become a Hilbert space $\mathcal{H}_\varphi$: